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Abstract
We show that the complex PT-symmetric potential V (x) = −V1 sech2x +
iV2 sech x tanh x entails a single zero-width resonance (spectral singularity)
when V1 + |V2| = 4n2 + 4n + 3

4 (n = 0, 1, 2, 3, . . . , |V2| > V1 + 1/4) and the
positive resonant energy is given as E∗ = 1

4 [|V2| − (1/4 + V1)].

PACS numbers: 03.65.Ge, 03.65.Nk, 11.30.Er, 42.25.Bs

The physical energy poles of s-matrix or transmission/reflection amplitudes yield a discrete
spectrum of bound states and resonances of a Hermitian scattering potential well [1]. In
the former, the energies are real and negative (within the potential well), whereas in the
latter, these are complex where the real part is positive. An interesting study of the physical
poles of scattering amplitudes for a versatile and exactly solvable potential is available in [2].
Resonances are also called Gamow or Sigert states embedded in positive energy continuum
which were first applied in the theory of alpha-decay [1].

For about a decade [3, 4] now, the non-Hermitian complex PT-symmetric potentials have
been investigated to have a real discrete spectrum. In the PT-symmetry P denotes parity
transformation (x → −x) and T the time-reversal: (i → −i).

The complex PT-symmetric potential

V (x) = −V1 sech2x + iV2 sechx tanh x (1)

is the first [5] exactly solvable model of the complex PT-symmetric potential to demonstrate
analytically and explicitly that the spectrum is real and discrete provided V2 < V1 + 1/4
(assuming V1 to be positive) and the energy eigenstates are also the eigenstates of the antilinear
operator PT; otherwise the PT-symmetry is spontaneously broken and the spectrum contains
complex conjugate pairs of eigenvalues. This model has helped in finding or demonstrating
several other features of complex PT-symmetric interactions [6, 7].

The real Hermitian version of this scattering potential is called Scarf II for which the
exact analytic scattering amplitudes have already been found [8, 9]. In this communication,
we would like to show that the reflection/transmission amplitudes for (1) when V1 > 0 have
two kinds of discrete poles. One set of them are having real and complex-conjugate energies
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with real part as negative. These are otherwise known as a discrete spectrum of bound states
[5].

The other one is a single positive energy which exists provided the potential parameters
V1, V2 satisfy a certain special condition. This is quite like the shape resonance embedded in
positive energy continuum of a Hermitian potential. However, in contrast, the new resonance is
having a zero width. In recent instructive investigations [10, 11], this pole has been discussed
as a spectral singularity of non-Hermitian Hamiltonian which is also like a resonance with
zero width. In [11], as an example, a complex PT-symmetric model has been used to find the
spectral singularity; the calculations are very cumbersome and implicit. In the following, we
present the potential (1) as an exactly solvable model for the spectral singularity. Here both
the condition on the potential parameters and the resonant energy are very simple and explicit.

Using 2m = 1 = h̄2 for the Schrödinger equation, let us define

k =
√

E, p = 1
2

√
|V2| + V1 + 1/4, q = 1

2

√
|V2| − (V1 + 1/4), s = 1

2

√
1/4 + V1 − |V2|,

(2)

where E is the energy. Then following [8, 9], we can write the transmission amplitude for (1)
as

t (k)= �[1/2 − p − i(q + k)]�[1/2 + p + i(q − k)]�[1/2 + p − i(q + k)]�[1/2 −p + i(q− k)]

�[−ik]�[1 + ik]�2[1/2 − ik]
,

r(k) = f (k)t (k),

f (k) = i[(sin2 πp + sinh2 πq) sech πk + (cos2 πp + sinh2 πq) cosech πk]. (3)

Earlier for non-symmetric complex potentials handedness of reflectivity has been proved [12].
For the complex PT-symmetric potential (1), r(−k) �= r(k) follows consequently [6, 12].

The property of the Gamma (�) function that �(−N) = ∞ where N is a non-negative
integer helps in studying the poles of the transmission amplitude t (k) (3). The poles of four
Gamma functions in (3) are ikn = [n + 1/2 + εp + σ iq], where n = 0, 1, 2, . . . , and ε and
σ are ± independently. Consequently, we recover a discrete spectrum of complex conjugate
pairs [5] from the relevant (ε = −) poles when |V2| > 1/4 + V1, V1 > 0:

En = −[n + 1/2 − (p ± iq)]2, (4)

as s is real. When |V2| < V1 + 1/4, V1 > 0 and s is purely imaginary, we recover [5] two
branches of the real discrete spectrum:

En+ = −[n+ + 1/2 − (p + s)]2, En− = −[n + 1/2 − (p − s)]2, n± = 0, 1, 2, 3, . . . , m±.

(5)

Here m± = Integer part of [p ± s]. Note that in these eigenvalues ((4), (5)), the real part
is negative. When V1 < 0, s ((2), (5)) becomes non-real and there are no real bound states.
More importantly in this case, the real part of (1) becomes a barrier [6]. However, in what
follows V1 could be positive or negative.

Now we find a very interesting scope for the poles of (3) at positive discrete energies. We
set

1/2 − p = −n or 1/2 + p = −n, n � 0. (6)

We get a condition on the potential parameter as

V1 + |V2| = 4n2 + 4n + 3
4 , n = 0, 1, 2, 3, . . . . (7)

Further, we get k∗ = ±q or equivalently

E∗ = 1
4 [|V2| − (1/4 + V1)] � 0, (8)
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which is a single energy. The presence of | · | indicates the commonness of these results
((7), (8)), even if the sign of V2 is changed. Changing the sign of V2 in (1) is equivalent to
changing the direction of incidence of the particle at the potential. In doing so, as said earlier,
only the reflection amplitudes will change and not the poles. Also note that for the positivity of
E∗ and hence for the existence of the spectral singularity, |V2| needs to be larger than V1 + 1/4,
meaning the imaginary part of the potential (1) should be stronger than the real part. However,
for the binding potentials such as V (x) = x2 − g(ix)ν whose both real and imaginary parts
diverge asymptotically, the concept of the stronger real/imaginary part may not make sense.

So we conclude that whenever the complex PT-symmetric scattering potential (1) has
its parameters satisfying condition (7), there will occur a zero-width single resonance at real
energy E = E∗ (8). We conjecture that for complex PT-symmetric scattering potentials
(s.t., V (±∞) = 0) the imaginary part of the potential ought to be necessarily stronger than
that of the real part. It is instructive to note here that whether or not the real part of the complex
PT-symmetric potential is a well or a barrier the parameter-dependent spectral singularity can
occur. Curiously enough like the model of [11], here too we get a single resonant energy
(8) when the potential (1) is fixed as per condition (7). Therefore, further, it is desirable
to investigate whether a complex PT-symmetric potential can support at most one (or more)
spectral singularity(ies).
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